博客
关于我
深度解剖(5):白话谈anchor(锚点),不懂来找我!
阅读量:730 次
发布时间:2019-03-21

本文共 879 字,大约阅读时间需要 2 分钟。

锚点(anchor)的生成与学习在深度学习的框架中扮演着重要角色,是理解目标检测和分类算法的基础。为了帮助读者更好地理解这一技术,我来详细解析锚点的生成过程及其意义。

锚点的生成主要源于训练数据集的标注数据。在目标检测任务中,每个训练样本都有明确的标签,通常包括目标的类别和位置信息。通过聚类分析,将这些标注框按照长宽尺寸进行分类,可以将数据集划分为若干类别。从每类中选择中间大小的框作为锚点,通常将其划分为9类,以覆盖多样化的物体尺寸特性。

选择中间大小的框作为锚点的出发点在于,中间尺寸的框既能覆盖大多数物体,又能尽可能准确地捕捉物体特征。这类似于我们在现实世界中,选择适合大多数物体的工具或框架。然而,这样做也存在一些缺陷。即使是中间大小的框,它同样无法完美适应每一种物体的细微差异。因此,如何在锚点的选择上找到精确度与泛化能力的平衡点,是深度学习模型优化的重要课题。

锚点的学习过程可以用一个生动的比喻来理解:想象你正在用绳子捉迷藏,不同的目标物体体型各异,需要不同大小的绳子。通过锚点的学习,模型应能够根据训练数据自动调整绳子的长度和位置,以适应各种不同的物体特征。

在机器学锚点的过程中,我们其实是在用网络预测物体位置。机器通过回路模拟这个过程,找到最优的锚点框,使得框与目标物体的交集(IoU)最大化。在这个过程中,网络会学习锚点框的漂移策略,通过特征图的滑动窗口来定位目标物体。

滑动窗口的划舞动过程中,机器学习算法会尝试不同的锚点框,用来圈出目标物体。这个过程正是静态锚点学习的体现。静态锚点意味着模型只用预先定义的锚点框,而之后的学习过程是如何用这些框去适应物体的具体位置特征。

这一机制的核心作用在于,在特征图上定义多个锚点框,然后通过回路模拟将这些锚点框映射到目标检测的特征图中。在这个过程中,模型会计算不同位置框与目标物体的重合程度,最终在重合度最高的位置选择锚点框作为预测结果。

通过以上机制,锚点框不仅承担了物体检测的基本任务,同时也为分类任务提供了位置信息的参考。这一两栖结构使得锚点在整个目标检测框架中扮演着至关重要的角色。

转载地址:http://yiigz.baihongyu.com/

你可能感兴趣的文章
Node.js高级编程:用Javascript构建可伸缩应用(1)1.1 介绍和安装-安装Node
查看>>
nodejs + socket.io 同时使用http 和 https
查看>>
NodeJS @kubernetes/client-node连接到kubernetes集群的方法
查看>>
NodeJS API简介
查看>>
Nodejs express 获取url参数,post参数的三种方式
查看>>
nodejs http小爬虫
查看>>
nodejs libararies
查看>>
vue3+element-plus 项目中 el-switch 刷新后自动触发change?坑就藏在这里!
查看>>
nodejs npm常用命令
查看>>
nodejs npm常用命令
查看>>
Nodejs process.nextTick() 使用详解
查看>>
NodeJS yarn 或 npm如何切换淘宝或国外镜像源
查看>>
nodejs 中间件理解
查看>>
nodejs 创建HTTP服务器详解
查看>>
nodejs 发起 GET 请求示例和 POST 请求示例
查看>>
NodeJS 导入导出模块的方法( 代码演示 )
查看>>
nodejs 开发websocket 笔记
查看>>
nodejs 的 Buffer 详解
查看>>
nodejs 的 path 模块详解
查看>>
NodeJS 的环境变量: 开发环境vs生产环境
查看>>